Mark Scheme - C3.3 Halogenoalkanes

- e.g. damages liver/ damages pancreas/causes cancer/causes skin disorders/ 1 short-term effects (1)
 - e.g. more traffic accidents/violent behaviour/criminal behaviour (1) [2]
 - Nucleophilic substitution / hydrolysis (1) (b)

$$H_7C_3 - C_3 - C_4 - C_5 - C_5 - C_7 - C$$

Reactants: Intermediate (1)

(accept curly arrow to show

Polarisation (1) curly arrow (1) C – CI breaking instead of intermediate) [4]

(Incorrect starting material or product maximum 2 marks from 3 for mechanism)

- Peak at 650–800 cm⁻¹ due to C CI bond will be gone (1) Peak at 2500–3500 cm⁻¹ due to O H bond / (ii) 1000-1300 cm⁻¹ due to C - O bond will be present (1) [2]
- (C) (i) [1]
 - Structural / positional / chain (ii) [1]
 - (iii) Colour change from orange to green [1]
 - (iv) Concentrated sulfuric acid / aluminium oxide (1) $CH_3CH_2CH_2CH_2OH \longrightarrow CH_3CH_2CHCH_2 + H_2O$ (1) [2]
- C F bond stronger than C Cl bond (1) (d) C - CI bond breaks (in stratosphere) forming CI which reacts with ozone (1) [2]
 - (ii) Some CFCs still being used / CFCs take a very long time to reach the ozone layer / other substances deplete the ozone layer [1]

Total [16]

2 (a) (i) Nucleophilic substitution / Hydrolysis

[1]

- (ii) Dissolved in alcohol (1) Propene or unambiguous structure
- [2]

(1)

- (iii) Potassium manganate(VII) / Potassium dichromate(VI) must be name
 Oxidation (1)
- (1) [2]
- (iv) (Add Potassium dichromate(VI)) and distil off the propanal from the reaction mixture
- [1]

(b) (i) Step 1: Potassium cyanide in ethanol / Heat (1)

Step 2: Heat with aqueous hydrochloric acid (or other acid) (1)

[3]

- (ii) Two points from different bullet points 1 mark each.
- Atom economy / Amount of waste / Whether waste material was recyclable / Whether waste was toxic.
- Amount of energy required / temperature required / pressure required / conditions used
- Rate of production / time
- Availability of catalyst
- Cost of reactants / Availability of reactants / toxicity of reactants.
- Two step processes usually have lower yields than one step processes / percentage yield
- Purification method / separation
- (c) (i) Butanoic acid is $C_4H_8O_2$ so $M_r = 88$ (1)

Percentage carbon = 48/88 x 100 = 54.5%; percentage hydrogen = 8/88 = 9.1%;

Percentage oxygen = 32/88 = 36.4% (At least two of these for 1)

OR empirical formula for butanoic acid = C2H4O (1) and

calculate empirical formula from percentage masses = C₂H₄O (1)

[2]

- (ii) Structure 1 mark + 4 marks for explanations.
 - Product is ethyl ethanoate. (1)
 - Two points from the following required for each mark- MAX 4 marks
 - Sweet-smelling = ester
 - Peak at 1.0ppm implies CH₃
 - Peak area 3 = CH₃
 - o Peak area 2 = CH,
 - o Triplet shows CH3 is next to a CH2 group.
 - Singlet shows CH₃ no hydrogen atoms bonded to adjacent carbon.
 - o Peak at 2.1 ppm suggests this is next to C=O.
 - Quartet shows CH₂ is adjacent to a CH₃ group.
 - o Peak at 4.0 ppm shows it is -O-CH2-
 - o IR Peak at 1752 cm = C=O
 - o IR Peak at 2981 cm-1 = C-H or O-H
 - Cannot be –OH as we know there is no –OH in NMR spectrum

[5]

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter. (1)

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate. (1) [2]

[20 marks]

3 (a) (i)

$$CH_3$$
— CH_2 — CH_3 —

curly arrows (1) charges (1) [2]

(ii) Nucleophile hydroxide ion / OH / water (1)

Substitution the replacement of one functional group by another (1) [2]

4	(a)			[1]
	(b)			[1]
5	(a)	(i)	δ– on Br and δ+ on C attached (1)	
			Arrow from lone pair on OH- to δ+ on C (1)	
			Arrow from C-Br bond to Br (1)	
			Correct alcohol + Br (1)	[4]
		(ii)	Nucleophilic substitution	[1]
		(iii)	The bond breaks and both the electrons go to one of the bonded atoms/ the bond breaks and ions are formed.	[1]
	(b)	(i)	Sodium hydroxide in ethanol/ alcohol	[1]
		(ii)	Elimination/ dehydrohalogenation	[1]
		(iii)	Structural formulae for but-1-ene (1)	
			and but-2-ene (1)	[2]